Given: 6x + 2(6-x) > 2x -2 < 5x/2 - 3x/4; then x can take which of the following values?
Expression 1 : $$2x - 2 < \frac{5x}{2} - \frac{3x}{4}$$
=> $$2x - 2$$ < $$\frac{7x}{4}$$
=> $$8x - 8$$ < $$7x$$
=> $$8x - 7x$$ < $$8$$
=> $$x$$ < $$8$$ ----------(i)
Expression 2Â :Â $$6x + 2(6 - x)$$ > $$2x - 2$$
=> $$4x + 12$$ > $$2x - 2$$
=> $$4x - 2x$$ > $$-12 - 2$$
=> $$2x$$ > $$-14$$
=> $$x$$ > $$-7$$ ------(ii)
Combining inequalities (i) and (ii), we get : $$-7$$ < $$x$$ < $$8$$
Thus, only value that $$x$$ can take among the options =Â 5
=> Ans - (C)
Create a FREE account and get: