A, B and CÂ are three points on a circle such that the angles subtended by the chords AB and AC at the centre O are $$80^\circ$$Â and $$120^\circ$$, respectively. The value of $$\angle BAC $$ is:
In the $$\triangle OAB,
OB = OA(radius) so,
$$\angle OBA =Â \angle BAO$$
$$\angle OBA + \angle BAO + \angle AOB = 180\degree$$
$$\angle BAO + \angle BAO + 80\degree = 180\degree$$
$$2\angle BAO =Â 180 - 80 = 100\degree$$
$$\angle BAO = 50\degree$$
In the $$\triangle OAC,
OC = OA(radius) so,
$$\angle OAC = \angle OCA$$
$$\angle OAC + \angle OCA + \angle AOC = 180\degree$$
$$\angle OACÂ + \angleOAC + 120\degree = 180\degree$$
$$2\angle OAC = 180 - 120 = 60\degree$$
$$\angle OACÂ = 30\degree$$
$$\angle BAC =Â \angle BAO +Â \angle OAC$$
$$\angle BAC = 50 + 30 = 80\degree$$
Create a FREE account and get: