Question 54

Which of the following relation (s) is/are true ?

I. $$\sqrt2>\sqrt[3]{3}$$
II. $$\sqrt[3]{3}>\sqrt2$$
III. $$\sqrt2=\sqrt[3]{3}$$

Solution

Terms : $$\sqrt2$$ and $$\sqrt[3]{3}$$

$$\equiv(2)^{\frac{1}{2}}$$ and $$(3)^{\frac{1}{3}}$$

L.C.M. of (2,3) = 6, thus multiplying the exponents by 6, we get :

=> $$(2)^{\frac{6}{2}}$$ and $$(3)^{\frac{6}{3}}$$

=> $$(2)^3$$ and $$(3)^2$$

=> $$8$$ and $$9$$

Now, $$9>8$$

$$\equiv\sqrt[3]{3}>\sqrt2$$

Thus, only II is true.

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App