If $$x + y + z = 19, x^2 + y^2 + z^2 = 133$$, then the value of $$x^3 + y^3 + z^3 - 3xyz$$ is:
$$\left(x+y+z\right)=19$$
Squaring both side,
$$\left(x+y+z^{ }\right)^2=19^2$$
$$x^2+y^2+z^2+2\left(xy+yz+xz\right)=361$$
$$133+2\left(xy+yz+xz\right)=361$$
$$\left(xy+yz+xz\right)=114$$
$$x^3 + y^3 + z^3 - 3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz$$
$$x^3 + y^3 + z^3 - 3xyz=19 (133-114) = 361.
Create a FREE account and get: