Sign in
Please select an account to continue using cracku.in
↓ →
If $$x + y = 14; x^3 + y^3 = 1064$$, then the value of $$(x - y)^2$$ is:
Given, $$x + y = 14$$
$$x^3 + y^3 = 1064$$
$$=$$> $$\left(x+y\right)\left(x^2+y^2-xy\right)=1064$$
$$=$$> $$14\left(x^2+y^2+2xy-3xy\right)=1064$$
$$=$$> $$\left(x+y\right)^2-3xy=76$$
$$=$$> $$\left(14\right)^2-3xy=76$$
$$=$$> $$196-3xy=76$$
$$=$$> $$3xy=120$$
$$=$$> $$xy=40$$
$$\therefore\ $$ $$(x - y)^2=x^2+y^2-2xy$$
$$=x^2+y^2+2xy-4xy$$
$$=\left(x+y\right)^2-4xy$$
$$=\left(14\right)^2-4\left(40\right)$$
$$=196-160$$
$$=36$$
Hence, the correct answer is Option A
Create a FREE account and get: