If $$\frac{4}{3}\left(x^2+\frac{1}{x^2}\right)=110\frac{2}{3}$$, find $$\frac{1}{9} \left(x^3 - \frac{1}{x^3}\right)$$, where $$x$$ > 0.
Given, $$\frac{4}{3}\left(x^2+\frac{1}{x^2}\right)=110\frac{2}{3}$$
$$\Rightarrow$$ Â $$\frac{4}{3}\left(x^2+\frac{1}{x^2}\right)=\frac{332}{3}$$
$$\Rightarrow$$ Â $$x^2+\frac{1}{x^2}=83$$
$$\Rightarrow$$ Â $$x^2+\frac{1}{x^2}-2=83-2$$
$$\Rightarrow$$ Â $$\left(x-\frac{1}{x}\right)^2=81$$
$$\Rightarrow$$ Â $$x-\frac{1}{x}=9$$
$$\Rightarrow$$ Â $$\left(x-\frac{1}{x}\right)^3=9^3$$
$$\Rightarrow$$ Â $$x^3-\frac{1}{x^3}-3.x.\frac{1}{x}\left(x-\frac{1}{x}\right)=729$$
$$\Rightarrow$$ Â $$x^3-\frac{1}{x^3}-3\left(9\right)=729$$
$$\Rightarrow$$ Â $$x^3-\frac{1}{x^3}-27=729$$
$$\Rightarrow$$ Â $$x^3-\frac{1}{x^3}=756$$
$$\Rightarrow$$ Â $$\frac{1}{9}\left(x^3-\frac{1}{x^3}\right)=\frac{1}{9}\left(756\right)$$
$$\Rightarrow$$ Â $$\frac{1}{9}\left(x^3-\frac{1}{x^3}\right)=84$$
Hence, the correct answer is Option C
Create a FREE account and get: