Question 54

If $$\cos \theta = \frac{2p}{p^2 + 1}$$, then $$\sin \theta$$ is equal to:

Solution

$$\cos \theta = \frac{2p}{p^2 + 1}$$

We know , $$\cos^2 \theta$$ +  $$\sin^2 \theta $$= 1

Hence ,

$$\sin^2 \theta = $$1 -$$\left(\frac{2p}{p^2 + 1}\right)^2$$

$$\sin\ ^2\theta\ =\ \frac{\left(p^2+1-2p\right)}{\left(p^2+1\right)^2}$$

$$\sin\ ^2\theta\ =\ \frac{\left(p^2-1\right)^2}{\left(p^2+1\right)^2}$$

$$\sin\ ^2\theta\ =\ \frac{p^2-1}{p^2+1}$$

Hence , option C is correct.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App