$$\cos \theta = \frac{2p}{p^2 + 1}$$
We know , $$\cos^2 \theta$$ + $$\sin^2 \theta $$= 1
Hence ,
$$\sin^2 \theta = $$1 -$$\left(\frac{2p}{p^2 + 1}\right)^2$$
$$\sin\ ^2\theta\ =\ \frac{\left(p^2+1-2p\right)}{\left(p^2+1\right)^2}$$
$$\sin\ ^2\theta\ =\ \frac{\left(p^2-1\right)^2}{\left(p^2+1\right)^2}$$
$$\sin\ ^2\theta\ =\ \frac{p^2-1}{p^2+1}$$
Hence , option C is correct.
Create a FREE account and get: