If $$2 \sin \theta - 8 \cos^2 \theta + 5 = 0, 0^\circ < \theta < 90^\circ$$, then what is the value of $$(\tan 2\theta + \cosec 2\theta)?$$
$$2 \sin \theta - 8 \cos^2 \theta + 5 = 0$$
$$\Rightarrow2 \sin \theta -Â 8(1 -Â \sin^2 \theta) + 5 = 0$$
$$\Rightarrow8 \sin^2 \theta + 2 \sin \theta - 3 = 0$$
$$\Rightarrow8 \sin^2 \theta + 6 \sin \theta- 4 \sin \theta- 3 = 0$$
$$\Rightarrow4\sin \theta(2\sin \theta - 1) + 3(2\sin \theta - 1) = 0$$
$$\Rightarrow(4\sin \theta + 3)(2\sin \theta - 1) = 0$$
$$\Rightarrow\sin \theta = 1/2$$
$$\Rightarrow\theta = 30\degree$$
$$(\tan 2\theta + \cosec 2\theta)$$
= $$(\tan 2 \times 30\degree+ \cosec 2 \times 30\degree)$$
= $$(\tan 60\degree+ \cosec 60\degree)$$
=$$\sqrt3 + \frac{2}{\sqrt3}$$
=$$ \frac{5}{\sqrt3} =Â \frac{5\sqrt3}{3}$$
Create a FREE account and get: