The first positive even number is 2 and the 50th positive even number will be 100.
So the series will be 2, 4, 6, 8 ............... 100.
Sum of the above-given series =Â $$\frac{n}{2}\times\ \left[2a+\left(n-1\right)d\right]$$
n = number of terms = 50
a = first term = 2
d = difference in the consecutive terms = 2
Put all the values in the formula.
Sum =Â $$\frac{50}{2}\times\ \left[2\times2+\left(50-1\right)2\right]$$
=Â $$25\times\ \left[4+49\times\ 2\right]$$
=Â $$25\times\ \left[4+98\right]$$
= $$25\times\ 102$$
average of the first 50 positive even numbers =Â $$\frac{25\times\ 102}{50}$$
= $$\frac{102}{2}$$
= 51
Shortcut::
average of the first 50 positive even numbers =Â $$\frac{first\ term\ +last\ term}{2}$$
=Â $$\frac{2\ +100}{2}$$
=Â $$\frac{102}{2}$$
= 51
Create a FREE account and get: