In $$\triangle$$ABC, $$\angle$$A = 52$$^\circ$$. Its sides AB and AC are produced to the points D and E respectively. If the bisectors of the $$\angle$$CBD and $$\angle$$BCE meet at point O, then $$\angle$$BOC is equal to:
Given,
In $$\triangle$$ABC, $$\angle$$A = 52$$^\circ$$
OB is the angular bisector of $$\angle$$CBD
$$=$$> Â $$\angle$$OBD =Â $$\angle$$OBC
Let $$\angle$$OBD = $$\angle$$OBC = $$x$$
OC is the angular bisector of $$\angle$$BCE
$$=$$> Â $$\angle$$OCE = $$\angle$$OCB
Let $$\angle$$OCE = $$\angle$$OCB = $$y$$
From the figure,
$$\angle$$ABC + $$\angle$$CBD = 180$$^\circ$$
$$=$$> Â $$\angle$$ABC + $$x$$ + $$x$$ =Â 180$$^\circ$$
$$=$$> $$\angle$$ABCÂ = 180$$^\circ$$- 2$$x$$
$$\angle$$ACB + $$\angle$$BCE = 180$$^\circ$$
$$=$$> $$\angle$$ACB + $$y$$ + $$y$$ = 180$$^\circ$$
$$=$$> $$\angle$$ACB = 180$$^\circ$$- 2$$y$$
In $$\triangle$$ABC,
$$\angle$$ABC + $$\angle$$ACB + $$\angle$$BAC =Â 180$$^\circ$$
$$=$$> Â 180$$^\circ$$- 2$$x$$ +Â 180$$^\circ$$- 2$$y$$ +Â 52$$^\circ$$ =Â 180$$^\circ$$
$$=$$>Â Â 2$$x$$ +Â 2$$y$$ =Â 180$$^\circ$$ +Â 52$$^\circ$$
$$=$$>Â 2$$(x+y)$$ =Â 232$$^\circ$$
$$=$$>Â $$x+y$$ =Â 116$$^\circ$$ ....................(1)
In $$\triangle$$OBC,
$$\angle$$OBC + $$\angle$$OCB + $$\angle$$BOC = 180$$^\circ$$
$$=$$>Â $$x$$ + $$y$$ +Â $$\angle$$BOC =Â 180$$^\circ$$
$$=$$> Â 116$$^\circ$$ +Â $$\angle$$BOC = 180$$^\circ$$
$$=$$>Â $$\angle$$BOC = 180$$^\circ$$-Â 116$$^\circ$$
$$=$$> Â $$\angle$$BOC = 64$$^\circ$$
Hence, the correct answer is Option A
Create a FREE account and get: