In $$\triangle PQR, \angle Q = 85^\circ$$ and $$\angle R = 65^\circ$$. Points S and T are on the sides PQ and PR, respectively such that $$\angle STR = 95^\circ$$, and the ratio of the QR and ST is 9 : 5. If PQ = 21.6 cm, then the length of PT is:
$$\angle PTS +Â \angle STR = 180^\circ$$
$$\angle PTS =Â 180^\circ -Â 95^\circ = 85^\circ$$
$$\triangle$$ PTS is similar to $$\triangle$$ PQR So,
($$\angle$$ P is common and $$\angle PTS = \angle SQR$$)
$$\frac{ST}{QR} = \frac{PT}{PQ}$$
(QR : ST = 9 : 5 and PQ = 21.6 cm)
$$\frac{5}{9} = \frac{PT}{21.6}$$
$$21.6 \times 5 = PT \times 9$$
PT = 108/9 = 12 cm
$$\therefore$$ The length of PT is 12 cm.
Create a FREE account and get: