Sign in
Please select an account to continue using cracku.in
↓ →
If $$x^2 - 2\sqrt{5}x + 1 = 0$$, then what is the value of $$x^5 + \frac{1}{x^5}$$?
$$x^2 - 2\sqrt{5}x + 1 = 0$$
Divide by x,
$$x - 2\sqrt{5} + \frac{1}{x} = 0$$
$$x + \frac{1}{x} = 2\sqrt{5}$$ ---(1)
$$(x + \frac{1}{x})^2 = (2\sqrt{5})^2$$
$$(x + \frac{1}{x})^2 = 20$$
$$x^2 + (\frac{1}{x})^2 + 2 = 20$$
$$x^2 + (\frac{1}{x})^2 = 18$$ ----(2)
From eq(1),
$$(x + \frac{1}{x})^3 = (2\sqrt{5})^3$$
$$x^3 + (\frac{1}{x})^3 + 3(x + \frac{1}{x}) = 40\sqrt{5}$$
$$x^3 + (\frac{1}{x})^3 = 40\sqrt{5} - 3(2\sqrt{5}) = 34\sqrt{5}$$ ---(3)
From eq(2) and (3),
$$(x^2 + (\frac{1}{x})^2)(x^3 + (\frac{1}{x})^3) = (18)(34\sqrt{5})$$
$$(x^5 + \frac{1}{x} + x + (\frac{1}{x})^5) = 612\sqrt{5}$$
$$x^5 + \frac{1}{x^5} =612\sqrt{5} - 2\sqrt{5}$$ = $$610\sqrt{5}$$
Create a FREE account and get: