If $$x = a + \frac{1}{a}  and  y = a - \frac{1}{a}$$ then $$\sqrt{x^4 + y^4 - 2x^2y^2}$$ is equal to:
As per the question,
$$x = a + \frac{1}{a}$$ and $$y = a - \frac{1}{a}$$
Squaring both side,
$$x^2 = (a + \frac{1}{a})^2=a^2+(\dfrac{1}{a})^2+2$$
Similarly
$$y^2 = (a + \frac{1}{a})^2=a^2+(\dfrac{1}{a})^2-2$$
Now, $$\sqrt{x^4 + y^4 - 2x^2y^2}=\sqrt{(x^2-y^2)^2}$$---------(i)
Substituting the values in the equation (i)
$$\sqrt{x^4 + y^4 - 2x^2y^2}=\sqrt{(x^2-y^2)^2}=\sqrt{(a^2+(\dfrac{1}{a})^2+2-a^2-(\dfrac{1}{a})^2+2)^2}=4$$
Create a FREE account and get: