If $$x = 4 \cos A + 5 \sin A$$Â and $$y = 4 \sin A - 5 \cos A$$, then the value of $$x^2 + y^2$$ is:
$$x = 4 \cos A + 5 \sin A$$
$$y = 4 \sin A - 5 \cos A$$
$$x^2 + y^2$$
=Â $$(4 \cos A + 5 \sin A)^2 + (4 \sin A - 5 \cos A)^2$$
($$(a + b)^2 = a^2 + b^2 + 2ab$$)
$$= (16 \cos^2 A + 25 \sin^2 A + 40\cos A\sin A) + (16Â \sin^2 A + 25 \cos^2 A -Â 40\cos A\sin A)^2$$
($$ \sin^2 A +Â \cos^2 A = 1$$)
= 16 + 25 = 41
Create a FREE account and get: