If $$\sin \theta - \cos \theta = \frac{1}{29}$$ find the value of $$\sin \theta + \cos \theta$$.
Given, Â $$\sin\theta-\cos\theta=\frac{1}{29}$$
$$\Rightarrow$$ Â $$\left(\sin\theta-\cos\theta\right)^2=\left(\frac{1}{29}\right)^2$$
$$\Rightarrow$$ Â $$\sin^2\theta+\cos^2\theta-2\sin\theta\ \cos\theta\ =\frac{1}{841}$$
$$\Rightarrow$$ Â $$1-2\sin\theta\ \cos\theta\ =\frac{1}{841}$$
$$\Rightarrow$$ Â $$2\sin\theta\ \cos\theta\ =1-\frac{1}{841}$$
$$\Rightarrow$$ Â $$2\sin\theta\ \cos\theta\ =\frac{840}{841}$$
$$\Rightarrow$$Â Â $$1+2\sin\theta\ \cos\theta\ =1+\frac{840}{841}$$
$$\Rightarrow$$ Â $$\sin^2\theta\ +\cos^2\theta\ +2\sin\theta\ \cos\theta\ =\frac{1681}{841}$$
$$\Rightarrow$$ Â $$\left(\sin\theta\ +\cos\theta\ \right)^2=\frac{1681}{841}$$
$$\Rightarrow$$ Â $$\sin\theta\ +\cos\theta\ =\sqrt{\frac{1681}{841}}$$
$$\Rightarrow$$ Â $$\sin\theta\ +\cos\theta\ =\frac{41}{29}$$
Hence, the correct answer is Option D
Create a FREE account and get: