If $$\sec \theta + \tan \theta = p, 0^\circ < \theta < 90^\circ$$, then $$\frac{p^2 - 1}{p^2 + 1}$$ is equal to:
$$\sec \theta + \tan \theta = p$$
$$(\sec \theta + \tan \theta)^2 = p^2$$ ---(1)
$$\frac{p^2 - 1}{p^2 + 1}$$
From eq(1),
=Â $$\frac{(\sec \theta + \tan \theta)^2 - 1}{(\sec \theta + \tan \theta)^2 + 1}$$
= $$\frac{\sec^2 \theta + \tan^2 \theta + 2\sec \theta \tan \theta - 1}{\sec^2 \theta + \tan^2 \theta + 2\sec \theta \tan \theta + 1}$$
= $$\frac{(\sec^2 \theta - 1) + \tan^2 \theta + 2\sec \theta \tan \theta}{\sec^2 \theta + 2\sec \theta \tan \theta +Â (\tan^2 \theta + 1)}$$
= $$\frac{2 \tan^2 \theta + 2\sec \theta \tan \theta }{2\sec^2 \theta + 2\sec \theta \tan \theta}$$
= $$\frac{\tan^2 \theta + \sec \theta \tan \theta }{\sec^2 \theta + \sec \theta \tan \theta}$$
= $$\frac{\tan \theta(\tan \theta + \sec \theta)}{\sec \theta (\sec \theta + \tan \theta)}$$
= $$\frac{\tan \theta}{\sec \theta}$$ = $$\sin\theta$$
Create a FREE account and get: