Expression : 162 + 172 + 182 + ……. 252
The above series is an A.P. with first term, $$a=162$$, last term, $$l=252$$ and common difference, $$d=10$$
Let number of terms be = $$n$$
=> Last term = $$l=a+(n-1)d$$
=> $$162+(n-1)10=252$$
=> $$(n-1)10=252-162$$
=> $$(n-1)=\frac{90}{10}=9$$
=> $$n=9+1=10$$
Sum of A.P. = $$\frac{n}{2}(a+l)$$
= $$\frac{10}{2}(162+252)$$
= $$5\times414=2070$$
=> Ans - (D)
Create a FREE account and get: