Two numbers are in the ratio 7 : 5. On diminishing each of them by 40, the ratio becomes 27 : 17. The difference between the numbers is:
Let the numbers are $$x$$ and $$y$$
According to questions, Ratio of $$x$$ and $$y$$ are $$7:5$$
$$\therefore \frac{x}{y}=\frac{7}{5}$$
$$\Rightarrow y=\frac{5x}{7}$$
After diminishing both of them by 40, Ratio becomes $$27:17$$
$$\therefore \frac{(x-40)}{(y-40)} = \frac{27}{17}$$
$$\Rightarrow 17(x-40)=27(y-40)$$
$$\Rightarrow 17x - 17\times40 = 27y - 27\times40$$
$$\Rightarrow 27y - 17x=27\times40 - 17\times40$$
$$\Rightarrow 27y - 17x=40\times(27-17)$$
$$\Rightarrow 27y - 17x=400$$
Putting value of $$y$$ in above equation,
$$\Rightarrow 27(\frac{5x}{7}) - 17x=400$$
$$\Rightarrow \frac{135x}{7} - 17x=400$$
$$\Rightarrow \frac{135x-119x}{7}=400$$
$$\Rightarrow 16x=2800$$
$$\Rightarrow x=\frac{2800}{16}=175$$
$$\Rightarrow y=\frac{5x}{7}=\frac{5\times175}{7}=5\times25=125$$
$$\therefore$$ Difference b/w both numbers =$$ 175-125=50$$
Create a FREE account and get: