If a + b + c = 8 and ab + bc + ca = 12, then $$a^3 + b^3 + c^3 - 3abc$$ is equal to:
Given that,
a + b + c = 8 and ab + bc + ca = 12
Now, we know that $$(a+b+c)^2=(a^2+b^2+c^2+2ab+2bc+2ca)$$
Now substituting the values
$$(a+b+c)^2=(a^2+b^2+c^2+2(ab+bc+ca)$$
$$\Rightarrow 8^2=(a^2+b^2+c^2+2\times 12)$$
$$\Rightarrow a^2+b^2+c^2=64-24$$
$$\Rightarrow a^2+b^2+c^2=40$$
Now,
$$a^3 + b^3 + c^3 - 3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$
Now substituting the values in the equation,
$$\Rightarrow a^3 + b^3 + c^3 - 3abc=8(40-12)$$
$$\Rightarrow a^3 + b^3 + c^3 - 3abc=224$$
Create a FREE account and get: