Question 52

If 2x + 3(5-2x) > 2 - 3x < 2x - x/3, then x can take which of the following values?

Solution

Expression 1 : $$2 - 3x < 2x - \frac{x}{3}$$

=> $$2 - 3x$$ < $$\frac{5x}{3}$$

=> $$5x$$ > $$6 - 9x$$

=> $$5x + 9x$$ > $$6$$

=> $$x$$ > $$\frac{3}{7}$$ ----------(i)

Expression 2 : $$2x + 3(5 - 2x)$$ > $$2 - 3x$$

=> $$2x + 15 - 6x$$ > $$2 - 3x$$

=> $$4x - 3x$$ < $$15 - 2$$

=> $$x$$ < $$13$$ ------(ii)

Combining inequalities (i) and (ii), we get : $$\frac{3}{7}$$ < $$x$$ < $$13$$

Thus, the values that $$x$$ can take = 1 , 2 , 3,...,12

=> Ans - (D)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App