Expression 1 : $$2 - 3x < 2x - \frac{x}{3}$$
=> $$2 - 3x$$ < $$\frac{5x}{3}$$
=> $$5x$$ > $$6 - 9x$$
=> $$5x + 9x$$ > $$6$$
=> $$x$$Â > $$\frac{3}{7}$$ ----------(i)
Expression 2Â :Â $$2x + 3(5 - 2x)$$Â >Â $$2 - 3x$$
=> $$2x + 15 - 6x$$ > $$2 - 3x$$
=> $$4x - 3x$$ < $$15 - 2$$
=> $$x$$ < $$13$$ ------(ii)
Combining inequalities (i) and (ii), we get : $$\frac{3}{7}$$ < $$x$$ < $$13$$
Thus, the values that $$x$$ can take = 1 , 2 , 3,...,12
=> Ans - (D)
Create a FREE account and get: