Question 52

ABC is an equilateral triangle. P,Q and R are the midpoints of sides AB,BC and CA, respectively. If the length of the side of the triangle ABC is 8 cm, then the area of $$ \triangle PQR $$ is:

Solution

In the $$\triangle$$ ABC, point P, Q, R are mid points so,

Sides of the $$\triangle$$ PQR = 8/2 = 4 cm

s = $$\frac{perimeter of \triangle PQR}{2} = \frac{4 + 4 + 4}{2} = 6 cm

Area of $$\triangle$$ PQR by Heron's formula,

= $$\sqrt{s(s - a)(s - b)(s - c)}$$ 

= $$\sqrt{6(6 - 4)(6 - 4)(6 - 4)}$$

= $$\sqrt{6(2)(2)(2}$$

= 4$$\sqrt3 cm^2$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App