Expression : (91 + 92 + 93 + ……… +140)
This is an arithmetic progression with first term, $$a = 91$$ , last term, $$l = 140$$ and common difference, $$d = 1$$
Let number of terms = $$n$$
Last term in an A.P. = $$a + (n - 1)d = 140$$
=> $$91 + (n - 1)(1) = 140$$
=> $$n - 1 = 140 - 91 = 49$$
=> $$n = 49 + 1 = 50$$
$$\therefore$$ Sum of A.P. = $$\frac{n}{2} (a + l)$$
= $$\frac{50}{2} (91 + 140)$$
= $$25 \times 231 = 5775$$
=> Ans - (A)
Create a FREE account and get: