The value of $$(5 + 3 \div 5 \times 5) \div (3 \div 3 of 6) of (4 \times 4 \div 4 of 4 + 4 \div 4 \times 4)$$ is:
As per the question,
$$(5 + 3 \div 5 \times 5) \div (3 \div 3 of 6) of (4 \times 4 \div 4 of 4 + 4 \div 4 \times 4)$$
Now,
$$\Rightarrow (5 + 3 \div 5 \times 5) \div (3 \div 3 of 6) of (4 \times 4 \div (4 \times 4)+ \dfrac{4}{4} \times 4))$$
$$\Rightarrow (5 + 3 \div 5 \times 5) \div (3 \div 3 of 6) of (4 \times \dfrac{4}{16} + 4)$$
$$\Rightarrow (5 + 3 \div 5 \times 5) \div (3 \div 3 of 6) of (5)$$
$$\Rightarrow (5 + 3 \div 5 \times 5) \div (3\div 18) of (5)$$
$$\Rightarrow (5 + 3 \div 5 \times 5) \div (\dfrac{1}{6}) of (5)$$
$$\Rightarrow \dfrac{(5 + 3 \div 5 \times 5)}{(\dfrac{5}{6})}$$
$$\Rightarrow \dfrac{(5 + \dfrac{3}{5} \times 5)}{ (\dfrac{5}{6})}$$
$$\Rightarrow \dfrac{(5 + 3)\times 6}{5}$$
$$\Rightarrow \dfrac{48}{ 5}$$
$$\Rightarrow 9\dfrac{3}{5}$$
Create a FREE account and get: