The area of an isosceles right angled triangle is 121 cm$$^2$$. Find its hypotenuse.
Let the base and height of the isosceles right angled triangle = $$a$$
Area of the triangle = $$\frac{1}{2}\times$$ base $$\times$$ height = $$\frac{1}{2}\times a\times a$$ = $$\frac{1}{2}a^2$$
Given, area of the triangle = 121 cm$$^2$$
$$\Rightarrow$$ $$\frac{1}{2}a^2=121$$
$$\Rightarrow$$ $$a=11\sqrt{2}$$
In the isosceles right angled triangle,
Hypotenuse$$^2$$ = $$a^2+a^2$$
$$\Rightarrow$$ Hypotenuse$$^2$$ = $$2a^2$$
$$\Rightarrow$$ Hypotenuse$$^2$$ = $$2\left(11\sqrt{2}\right)^2$$
$$\Rightarrow$$ Hypotenuse$$^2$$ = $$121\times4$$
$$\Rightarrow$$ Hypotenuse = 22 cm
Hence, the correct answer is Option C
Create a FREE account and get: