Question 51

The area of an isosceles right angled triangle is 121 cm$$^2$$. Find its hypotenuse.

Solution

Let the base and height of the isosceles right angled triangle = $$a$$

Area of the triangle = $$\frac{1}{2}\times$$ base $$\times$$ height = $$\frac{1}{2}\times a\times a$$ = $$\frac{1}{2}a^2$$

Given, area of the triangle = 121 cm$$^2$$

$$\Rightarrow$$  $$\frac{1}{2}a^2=121$$

$$\Rightarrow$$  $$a=11\sqrt{2}$$

In the isosceles right angled triangle,

Hypotenuse$$^2$$ = $$a^2+a^2$$

$$\Rightarrow$$  Hypotenuse$$^2$$ =  $$2a^2$$

$$\Rightarrow$$  Hypotenuse$$^2$$ = $$2\left(11\sqrt{2}\right)^2$$

$$\Rightarrow$$  Hypotenuse$$^2$$ = $$121\times4$$

$$\Rightarrow$$  Hypotenuse = 22 cm

Hence, the correct answer is Option C


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App