Question 51

In $$\triangle$$ABC,P is a point on BC such that BP : PC = 3 : 4 and Q is the midpoint of AP. Then ar($$\triangle$$ABQ): ar($$\triangle$$ABC) is equal to:

Solution

Given that,

In $$\triangle$$ABC, P is a point on BC such that BP: PC = 3: 4

Q is the midpoint of AP.

We know that if two triangles have the same hight, then the ratio of the area of the triangle is always equal to the ratio of their base length.
$$ar( \triangle ABC)=ar( \triangle APB)+ar( \triangle APC)$$

But, $$ \dfrac{ar(\triangle APB)}{ar(\triangle APC)}=\dfrac{BP}{PC}$$

In $$ \triangle APB$$ and $$\triangle APC$$, both have the same height, so

$$\Rightarrow \dfrac{ar(\triangle APB)}{ar(\triangle APC)}=\dfrac{3}{4}$$

So, $$\Rightarrow ar( \triangle APB)=3k$$ and $$ar( \triangle APC)=4k$$

Now,

$$\Rightarrow ar(\triangle ABC)=ar(\triangle APB)+ar(\triangle APC)=3k+4k=7k$$------------------------(i)

Now, In $$\triangle APB$$

$$\Rightarrow ar(\triangle APB)=ar(\triangle AQB)+ar(\triangle QBP)$$

But $$ \triangle AQB$$ and $$\triangle QBP$$ have the same height,

So $$ \dfrac{ar(\triangle AQB)}{ar(\triangle QPB)}=\dfrac{1}{1}$$

$$\Rightarrow ar(\triangle AQB)=ar(\triangle QPB)$$

Hence,$$ar(\triangle ABQ)=\dfrac{ar(\triangle APB)}{2}=\dfrac{3k}{2}$$------------------------(ii)

From equation (i) and (ii)

$$\Rightarrow \dfrac{ar(\triangle ABQ)}{ar(\triangle ABC)}=\dfrac{\dfrac{3k}{2}}{7k}$$

$$\Rightarrow \dfrac{ar(\triangle ABQ)}{ar(\triangle ABC)}=\dfrac{3}{14}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App