In $$\triangle PQR, \angle Q > \angle R, PS$$ is the bisectors of $$\angle P$$ and $$PT \perp PQ$$. If $$\angle SPT = 28^\circ$$ and $$\angle R = 23^\circ$$, then the measure of $$\angle Q$$ is:Â
$$\angle SPT = \frac{1}{2}(\angle Q - \angle R)$$
28 $$\times 2 =Â \angle Q - 23$$
$$angle Q = 56 +Â 23 = 79\degree$$
Create a FREE account and get: