In $$\triangle ABC, \angle B = 90^\circ$$, If the points D and E are on the side BC such that BD = DE = EC then which of the following is true?
Let the BD, BE and BC be x, 2x and 3x respectively.
In $$\triangle$$ ABD,
$$(AD)^2 = (AB)^2 + (BD)^2$$
$$(AD)^2 = (AB)^2 + (x)^2$$ ----(1)
In $$\triangle$$ ABE,
$$(AE)^2 = (AB)^2 + (BE)^2$$
$$(AE)^2 = (AB)^2 + (2x)^2$$
$$(AE)^2 = (AB)^2 + 4x^2$$ ---(2)
In $$\triangle$$ ABC,
$$(AC)^2 = (AB)^2 + (BC)^2$$
$$(AC)^2 = (AB)^2 + (3x)^2$$
$$(AC)^2 = (AB)^2 + 9x^2$$ ---(3)
Eq(1) multiply by 4,
$$4AD^2 = 4AB^2 + 4x^2$$ ---(4)
Eq(4) - (2),
$$4AD^2 - AE^2 = 3AB^2$$ ---(5)
Eq(1) multiply by 9,
$$9AD^2 = 9AB^2 + 9x^2$$ ---(6)
Eq(6) - (3),
$$9AD^2 - AC^2 = 8AB^2$$ ---(7)
Eq(5) multiply by 8 and Eq(7) multiply by 3,
$$32AD^2 - 8AE^2 = 24AB^2$$ ---(8)
$$27AD^2 - 3AC^2 = 24AB^2$$ ---(9)
From eq(8) and (9),
$$32AD^2 - 8AE^2 =Â 27AD^2 - 3AC^2$$
$$ 8AE^2 = 5AD^2 + 3AC^2$$
Create a FREE account and get: