In a stream running at 3 km/h, a motorboat goes 12 km upstream and back to the starting point in 60 min. Find the speed of the motor boat in still water. (in km/h)
Speed of stream = 3 km/hr
Let the speed of motor boat be v.
Relative speed in upstream = v - 3 km/hr
Relative speed in upstream = v + 3 km/hr
Distance = 12 km
Time = 60 min = 1 hr
Time = Distance/speedÂ
$$\frac{12}{v - 3} +Â \frac{12}{v + 3} = 1$$
12(v + 3) +Â 12(v - 3) =Â (v + 3)(v - 3)
24v = $$v^2$$ - 3^2
$$v^2 -24v - 9Â = 0$$
From Dharacharya Formula,
x = $$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
x =Â $$\frac{24 \pm \sqrt{24^2 - 4(1)(-9)}}{2}$$
x = $$\frac{24 \pm \sqrt{576 + 36}}{2}$$
x = $$12 \pm \sqrt{153}$$
x = $$12 \pm \sqrt{17 \times 9}$$
x = Â $$3(4 \pm \sqrt{17})$$
According to option,
x = $$3(4 + \sqrt{17})$$
Create a FREE account and get: