If $$x^2 + 1 = 3x$$, then the value of $$\frac{(x^4 + x^{-2})}{(x^2 + 5x + 1)}$$ is:
$$x^2 + 1 = 3x$$
$$\frac{1}{x}$$ is multiplied both the sides in the above equation.
$$x+\frac{1}{x}=3$$Â Â Eq.(i)
value of $$\frac{(x^4 + x^{-2})}{(x^2 + 5x + 1)}$$
$$\frac{1}{x}$$ is multiplied in the above equation.
$$\frac{\frac{1}{x}\times(x^4+\frac{1}{x^2})}{\frac{1}{x}\times(x^2+5x+1)}$$
$$\frac{(x^3+\frac{1}{x^3})}{(x+5+\frac{1}{x})}$$Â Â Â Eq.(ii)
take cube of Eq.(i).
$$\left(x+\frac{1}{x}\right)^3=3^3$$
$$x^3+\frac{1}{x^3}+3\times x\times\frac{1}{x}\left(x+\frac{1}{x}\right)=27$$
$$x^3+\frac{1}{x^3}+3\left(x+\frac{1}{x}\right)=27$$
Put Eq.(i) in the above equation.
$$x^3+\frac{1}{x^3}+3\times\ 3=27$$
$$x^3+\frac{1}{x^3}+9=27$$
$$x^3+\frac{1}{x^3} = 27-9 = 18$$ Â Â Eq.(iii)
Put Eq.(i) and Eq.(iii) in Eq.(ii).
$$\frac{18}{(3+5)}$$
$$\frac{18}{8}$$
$$\frac{9}{4}$$
$$2\frac{1}{4}$$
Create a FREE account and get: