If $$x = \left(\sqrt2 - 1\right)^{-\frac{1}{2}}$$ then the value of $$\left(x^2 - \frac{1}{x^2}\right)$$ is
$$x = \left(\sqrt2 - 1\right)^{-\frac{1}{2}} = \frac{1}{\sqrt{\sqrt{2} -1}} $$
$$ x^2 = \frac{1}{\sqrt{2} - 1} $$
$$ \frac{1}{x^2} =\frac{\sqrt{2} - 1}{1} $$
$$ x^2 - \frac{1}{x^2} =Â \frac{1}{\sqrt{2} - 1} -Â \frac{\sqrt{2} - 1}{1} $$
solving           = 2
Create a FREE account and get: