A circle is centred at O. Two tangents AP and AQ are drawn from an external point A. If $$\angle$$POQ = 118$$^\circ$$, then $$\angle$$PAQ is equal to:
Given, $$\angle$$POQ = 118$$^\circ$$
AP and AQ are tangents from point A to the circle with centre O
$$=$$>  $$\angle$$OPA = 90$$^\circ$$ and  $$\angle$$OQA = 90$$^\circ$$
From quadrilateral OPAQ,
$$\angle$$POQ + $$\angle$$OQA + $$\angle$$PAQ + $$\angle$$OPA = 360$$^\circ$$
$$=$$> Â 118$$^\circ$$ + 90$$^\circ$$ +Â $$\angle$$PAQ +Â 90$$^\circ$$ =Â 360$$^\circ$$
$$=$$>Â 298$$^\circ$$ +Â $$\angle$$PAQ =Â 360$$^\circ$$
$$=$$> Â $$\angle$$PAQ =Â 62$$^\circ$$
Hence, the correct answer is Option A
Create a FREE account and get: