A man rows 750 m in 675 seconds against the stream and returns in $$\ 7\frac{1}{2}\ $$minutes. Its rowing speed in still water is (in km/hr).
Boat's upstream speed($$S_{u}$$) $$= \frac{750}{675} = \frac{10}{9}$$ m/sec
Boat's downstream speed($$S_{d}$$) $$= \frac{750}{450} = \frac{5}{3}$$ m/sec
Boat's speed in still water $$= \frac{1}{2}\times(S_{u}+(S_{d})$$
$$= \frac{1}{2}\times(\frac{10}{9}+\frac{5}{3})$$
$$= \frac{1}{2}\times(\frac{25}{9})$$
$$= \frac{25}{18}$$ m/sec
Converting it into km/hr
$$= \frac{25}{18}\times\frac{18}{5} = 5$$ km/hrÂ
Create a FREE account and get: