Expression : $$\frac{secA}{secA-1}+\frac{secA}{secA+1}$$
= $$[(\frac{1}{cosA})\div(\frac{1}{cosA}-1)]+[(\frac{1}{cosA})\div(\frac{1}{cosA}+1)]$$
= $$[(\frac{1}{cosA})\div(\frac{1-cosA}{cosA})]+[(\frac{1}{cosA})\div(\frac{1+cosA}{cosA})]$$
= $$[(\frac{1}{cosA}) \times (\frac{cosA}{1-cosA})]+[(\frac{1}{cosA}) \times (\frac{cosA}{1+cosA})]$$
= $$(\frac{1}{1-cosA})+(\frac{1}{1+cosA})$$
= $$\frac{(1+cosA)+(1-cosA)}{(1+cosA)(1-cosA)} = \frac{2}{1-cos^2A}$$
= $$\frac{2}{sin^2A} = 2cosec^2A$$
=> Ans - (A)
Create a FREE account and get: