A metallic hemispherical bowl is made up of steel. The total steel used in making the bowl is $$486\pi cm^3$$. The bowl can hold $$144\pi cm^3$$ water. What is the thickness (in $$cm$$) of bowl and the curved surface area (in $$cm^2$$) of outer side?
Volume of hemisphere =Â $$\left(\frac{2}{3}\pi\times r^3\right)\ .$$
So, $$\left(\frac{2}{3}\pi\times r_1^3\right)=\ 486\pi\ \ .$$
or, $$r_1^3=\ 486\times\ \frac{3}{2}\ \ =729.$$
or, $$r_1=9.$$
And, $$\frac{2}{3}\times\ \pi\ \times\ r_2^3=144\pi\ .$$
or, $$r_2^3=144\ \times\frac{3}{2}=216\ .$$
or, $$r_2=6\ .$$
So, Thickness of bowl =Â $$r_1-r_2=9-6=3\ .$$
So, Curved surface area =Â $$2\times\ \pi\ \times\ r_1^2=2\times\ \pi\ \times\ 9^2=162\pi\ .$$
So, B is correct choice.
Create a FREE account and get: