Circumradius of a triangle = $$R = \frac{abc}{4\triangle}$$
Inradius = $$r=\frac{2\triangle}{a+b+c}$$
Let the side of the equilateral triangle = $$a$$ cm
Also, area of equilateral triangle = $$\triangle = \frac{\sqrt3}{4}a^2$$
=> Ratio of circumradius and inradius
= $$(\frac{a^3}{4\triangle})\div(\frac{2\triangle}{3a})$$
= $$\frac{3a^4}{8\triangle^2} = \frac{3a^4}{8a^4 \times \frac{3}{16}}$$
= $$\frac{16}{8}=\frac{2}{1}$$
=> Ans - (C)
Create a FREE account and get: