Let $$w=\frac{\sqrt{3}+i}{2}$$ and $$p={{w^{n}}:n=1,2,3,...}$$. Further $$H_{1}= \left\{Z\epsilon C : Rez>\frac{1}{2}\right\}$$ and $$H_{2}= \left\{Z\epsilon C : Rez<\frac{-1}{2}\right\}$$ where C is the set of all complex numbers. If $$Z_{1}\epsilon P \cap H_{1}$$, $$Z_{2}\epsilon P \cap H_{2}$$ and O represents the origin, then $$\angle z_{1}Oz_{2}=$$
Create a FREE account and get: