Question 40

If a(x + y) = b(x - y) = 2ab, then the value of 2($$x^{2} + y^{2}$$) is

Solution

Given : a(x + y) = b(x - y) = 2ab

=> $$a(x+y)=2ab$$

=> $$(x+y)=2b$$

Squaring both sides,

=> $$(x+y)^=(2b)^2$$

=> $$x^2+y^2+2xy=4b^2$$ -----------(i)

Similarly, $$(x-y)=2a$$

Squaring both sides,

=> $$(x-y)^=(2a)^2$$

=> $$x^2+y^2-2xy=4a^2$$ -----------(i)

Adding equations (i) and (ii), we get :

=> $$2x^2+2y^2=4a^2+4b^2$$

=> $$2(x^2+y^2)=4(a^2+b^2)$$

=> Ans - (D)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App