Sign in
Please select an account to continue using cracku.in
↓ →
If $$X+Y+Z=6$$ and $$XY+ZX+ZY=10$$, then find the value of $$X^3+Y^3+Z^3-3XYZ$$.
Given : $$xy+yz+zx=10$$ -------------(i)
Also, $$x+y+z=6$$ ------------(ii)
Squaring both sides, we get :
=> $$(x+y+z)^2=(6)^2$$
=> $$(x^2+y^2+z^2)+2(xy+yz+zx)=36$$
Substituting value from equation (i),
=> $$x^2+y^2+z^2+2(10)=36$$
=> $$x^2+y^2+z^2=36-20=16$$ ------------(iii)
To find : $$x^{3}+y^{3}+z^{3}-3xyz$$
= $$(x+y+z)[(x^2+y^2+z^2)-(xy+yz+zx)]$$
Substituting values from equations (i), (ii) and (iii),
= $$(6)(16-10)$$
= $$6\times6=36$$
=> Ans - (C)
Create a FREE account and get: