A quadratic equation : $$ax^2 + bx + c = 0$$ has real roots iff Discriminant, $$D = b^2 - 4ac \geq 0$$
(A) : $$3x^{2}-5x+2=0$$
=> D = $$(-5)^2 - 4(3)(2) = 25 - 24 = 1$$
(B) :Â $$3x^{2}-4x+2=0$$
=>Â D = $$(-4)^2 - 4(3)(2) = 16 - 24 = -8$$
(C) :Â $$4x^{2}-3x+2=0$$
=> D = $$(-3)^2 - 4(4)(2) = 9 - 32 = -23$$
(D) :Â $$5x^{2}-2x+2=0$$
=>Â D = $$(-2)^2 - 4(5)(2) = 4 - 40 = -36$$
Thus, the equation :Â $$3x^{2}-5x+2=0$$ has real roots.
Create a FREE account and get: