O is an centre of a circle. P is an external point of it at distance of 13cm from O. The radius of the circle is 5cm. Then the length of a tangent to the circle from P upto the point of contact is
Given : OT is radius of circle = 5 cm and OP = 13 cm
To find : Tangent PT = ?
Solution : The radius of a circle intersects the tangent at right angle, => $$\angle OTP = 90^\circ$$
Thus in $$\triangle$$ OPT,
=> $$(PT)^2=(OP)^2-(OT)^2$$
=> $$(PT)^2=(13)^2-(5)^2$$
=> $$(PT)^2=169-25=144$$
=> $$PT=\sqrt{144}=12$$ cm
=> Ans - (C)
Create a FREE account and get: