The value of $$\frac{2\sqrt{10}}{\sqrt{5} + \sqrt{2} - \sqrt{7}} - \sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2}} - \frac{3}{\sqrt{7} - 2}$$ is:
let the A =Â $$\frac{2\sqrt{10}}{\sqrt{5} + \sqrt{2}- \sqrt{7}}, B =Â \sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2}} and C =Â \frac{3}{\sqrt{7} - 2}$$.
C =$$\frac{3}{\sqrt{7} - 2}$$Â
multiply and divide by $$\sqrt{7} + 2$$
C =Â $$\frac{3}{\sqrt{7} - 2} \frac{\sqrt{7} + 2}{\sqrt{7} + 2}$$
by using (a+b)(a-b)Â = $$a^2 - b^2$$
C = $$\frac{3\sqrt{7} + 6}{3} = \sqrt{7} + 2$$
B =Â $$\sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2}}$$
multiply and divide by $$\sqrt{5} - 2$$
B =Â $$\sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2} \times \frac{\sqrt{5} - 2}{\sqrt{5} - 2}} = \sqrt{(\sqrt{5} - 2)^2} =Â \sqrt{5} - 2Â $$
A =Â $$\frac{2\sqrt{10}}{(\sqrt{5} + \sqrt{2})- \sqrt{7}}$$
divide and multiply by $$(\sqrt{5} + \sqrt{2}) +Â \sqrt{7}$$
A = $$\frac{2\sqrt{10}}{(\sqrt{5} + \sqrt{2})- \sqrt{7}}Â \times \frac{(\sqrt{5} + \sqrt{2}) + \sqrt{7}}{(\sqrt{5} + \sqrt{2}) + \sqrt{7}}$$
= $$\frac{2\sqrt{10} \times [\sqrt{5}+\sqrt{2}+\sqrt{7}]}{(\sqrt{5}+\sqrt{2})^2-7}$$
=Â $$\frac{2\sqrt{10} \times [\sqrt{5}+\sqrt{2}+\sqrt{7}]}{5 + 2 + 2\sqrt{10}-7}$$
= $$ [\sqrt{5}+\sqrt{2}+\sqrt{7}]$$
$$\frac{2\sqrt{10}}{\sqrt{5} + \sqrt{2} - \sqrt{7}} - \sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2}} - \frac{3}{\sqrt{7} - 2}$$
= A - B - C =Â $$ [\sqrt{5}+\sqrt{2}+\sqrt{7}] -Â \sqrt{5} + 2 -Â \sqrt{7} - 2 = \sqrt{2}$$
Create a FREE account and get: