Question 35

The least value of $$4^{\sin x} + 4^{\cos x}$$ for $$x \in R$$, is

Solution

Using $$A.M.\ge\ G.M.$$

$$\frac{\left(4^{\sin x}+4^{\cos x}\right)}{2}\ge\ \sqrt{\ 4^{\sin x+\cos x}}$$

or,  $$\left(4^{\sin x}+4^{\cos x}\right)\ge2\ \sqrt{\ 4^{\sin x+\cos x}}$$.

$$\left(4^{\sin x}+4^{\cos x}\right)\ge2\ \sqrt{\ 2^{2\left(\sin x+\cos x\right)}}=2.2^{\sin x+\cos x}=2^{1+\sin x+\cos x}$$

The minimum value of sinx +cosx when x lies in R is $$-\sqrt{\ 2}$$

Thus, the minimum value of the expression is $$2^{1-\sqrt{\ 2}}$$

Your Doubts

Ask a Doubt (know more)

Drop Your File Here!

** You can Drag and Drop an Image in the above textarea
add image

Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 40+ previous papers with solutions PDF
  • Top 500 MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App