Question 36

The value of 

$$\sum_{n = 0}^\infty \frac{n_{C_{0}} + n_{C_{1}} + ..... +n_{C_{n}}}{n_{P_{n}}}$$ 

is

Solution

Numerator is equal to $$2^n$$

Hence $$\sum_{n = 0}^\infty \frac{n_{C_{0}} + n_{C_{1}} + ..... +n_{C_{n}}}{n_{P_{n}}}$$ = $$\sum_{n=0}^{\infty}\frac{2^n}{n!}$$ 

We know $$e^x=\frac{x^n}{n!}$$

Hence e^2


Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 40+ previous papers with solutions PDF
  • Top 500 MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App