The value of
$$\sum_{n = 0}^\infty \frac{n_{C_{0}} + n_{C_{1}} + ..... +n_{C_{n}}}{n_{P_{n}}}$$
is
Numerator is equal to $$2^n$$
Hence $$\sum_{n = 0}^\infty \frac{n_{C_{0}} + n_{C_{1}} + ..... +n_{C_{n}}}{n_{P_{n}}}$$ = $$\sum_{n=0}^{\infty}\frac{2^n}{n!}$$
We know $$e^x=\frac{x^n}{n!}$$
Hence e^2
Create a FREE account and get: