If $$x^{3} - y^{3} = 112$$ and $$x - y = 4$$, then what is the value of $$x^{2} + y^{2}$$?
Given : $$x^3-y^3=112$$ --------------(i)
Also, $$x-y=4$$ -------------(ii)
Cubing both sides, we get :
=> $$(x-y)3=(4)^3$$
=> $$(x^3-y^3)-3(x)(y)(x-y)=64$$
Substituting values from equations (i) and (ii),
=> $$112-3xy(4)=64$$
=> $$12xy=112-64=48$$
=> $$xy=\frac{48}{12}=4$$ -----------(iii)
Now, squaring equation (ii), we get :
=> $$x^2+y^2-2xy=16$$
=> $$x^2+y^2=16+8=24$$
=> Ans - (C)
Create a FREE account and get: