Question 33

If $$\frac{\ \sin^2A-\sin^2B}{\cos^2A\cos^2B}=x$$, then the value of $$x$$ is

Solution

Given,  $$x=\frac{\ \sin^2A - \sin^2B}{\cos^2A\cos^2B}$$

$$=$$> $$x=\frac{\ 1-\cos^2A-\left(1-\cos^2B\right)}{\cos^2A\ \cos^2B}$$

$$=$$> $$x=\frac{\ \cos^2B-\cos^2A}{\cos^2A\ \cos^2B}$$

$$=$$> $$x=\frac{\ 1}{\cos^2A}-\frac{\ 1}{\cos^2B}$$

$$=$$> $$x=\sec^2A-\sec^2B$$

$$=$$> $$x=1+\tan^2A-1-\tan^2B$$

$$=$$> $$x=\tan^2A-\tan^2B$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App