Let k be a positive real number and let
$$A = \begin{bmatrix}2k-1 & 2\sqrt{k} & 2\sqrt{k} \\2\sqrt{k} & 1 & -2k \\-2\sqrt{k} & 2k & -1 \end{bmatrix}$$ and $$B = \begin{bmatrix}0 & 2k-1 & \sqrt{k} \\1-2k & 0 & 2\sqrt{k} \\-\sqrt{k} & -2\sqrt{k} & 0 \end{bmatrix}$$.If $$det(adj A) + det(adj B) = 10^6$$, then [k] is equal to
[Note : adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k].
Correct Answer: 4
Create a FREE account and get: