Let $$a_1, a_2, a_3, ...., a_{11}$$ be real numbers satisfying
$$a_1 = 15, 27 - 2a_2 > 0$$ and $$a_k = 2a_{k-1} - a_{k-2}$$, for k = 3, 4, ...., 11.
If $$\frac{a_{1}^{2} + a_{2}^{2} + ..... + a_{11}^{2}}{11} = 90$$, then the value of $$\frac{a_1 + a_2 + .... + a_{11}}{11}$$ is equal to
Correct Answer: 0
Create a FREE account and get: