If $$(\frac{5}{7})^{4x} (\frac{7}{5})^{3x-1} = (\frac{7}{5})^6$$, then the value of x which satisfies the equation.
Expression : $$(\frac{5}{7})^{4x} (\frac{7}{5})^{3x-1} = (\frac{7}{5})^6$$
=>Â $$(\frac{7}{5})^{-4x} (\frac{7}{5})^{3x-1} = (\frac{7}{5})^6$$
Using, $$(a)^m\times(a)^n=(a)^{m+n}$$
=> $$(\frac{7}{5})^{-4x+3x-1}=(\frac{7}{5})^6$$
Comparing the exponents, we get :
=> $$-x-1=6$$
=> $$x=-1-6=-7$$
=> Ans - (B)
Create a FREE account and get: