Sign in
Please select an account to continue using cracku.in
↓ →
The inequality $$\log_{2} \frac{3x - 1}{2 - x} < 1$$ holds true for
Given, $$\log_{2} \dfrac{3x - 1}{2 - x} < 1$$
So, $$\dfrac{3x-1}{2-x}>0$$ and $$\dfrac{3x-1}{2-x}<2$$
Solving the first inequality:
$$\dfrac{3x-1}{2-x}>0$$
or, $$\left(3x-1\right)\left(x-2\right)<0$$
or, $$\dfrac{1}{3}$$ $$<$$ $$x$$ $$<$$ $$2$$
Also, $$\dfrac{3x-1}{2-x}<2$$
or, $$\dfrac{3x-1}{2-x}-2<0$$
or, $$\dfrac{3x-1-4+2x}{2-x}<0$$
or, $$\dfrac{5x-5}{2-x}<0$$
or, $$\left(x-1\right)\left(x-2\right)>0$$
so, $$x<1$$ and $$x>2$$
So, overall we can say, $$\dfrac{1}{3}$$ $$<$$ $$x$$ $$<$$ $$1$$
So, option A is the correct answer
Create a FREE account and get: