Question 27

If 4(x + 1) - 3 < 3 - x < 2x + 5; then the value of x is

Solution

Expression 1 : $$3 - x < 2x + 5$$

=> $$2x + x$$ > $$3 - 5$$

=> $$x$$ > $$\frac{-2}{3}$$ ----------(i)

Expression 2 : $$4(x + 1) - 3 < 3 - x$$

=> $$4x + 1$$ < $$3 - x$$

=> $$4x + x$$ < $$3 - 1$$

=> $$x$$ < $$\frac{2}{5}$$ ------(ii)

Combining inequalities (i) and (ii), we get : $$\frac{-2}{3}$$ < $$x$$ < $$\frac{2}{5}$$

Thus, only value that $$x$$ can take among the options = 0

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App